
1. Introduction
Flooding is one of the most significant natural disasters in the United States (US) affecting both the loss of life 
and property. In 2017 and 2019, river and flash flooding combined represented the leading cause of death and 
the second leading cause in 2018 among all natural disasters in the US (National Weather Service, 2018, 2019; 
Service, 2020b). More than an average of 104 deaths per year are attributed to flood events from the 10 year period 
ending in 2019 (Service, 2020a). With respect to property damages, river and flash flooding have contributed 
to 60.7, 1.6, and 3.7 billion non-inflation adjusted US dollars in the annual periods of 2017–2019, respectively 
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(National Weather Service, 2018, 2019; Service, 2020b), with the large spike in 2017 attributed to the Hurricane 
Harvey event along the Gulf Coast. Trends related to flood damages and fatalities have been steadily increasing 
over recent decades (Corringham & Cayan, 2019; Downton et  al.,  2005; Kunkel et  al.,  1999; Mallakpour & 
Villarini, 2015; Pielke Jr. & Downton, 2000). Some are expecting that the hydrologic cycle will intensify due to 
climate change which will lead to more extreme precipitation in some areas along with a greater risk of flooding 
(Milly et al., 2002; Tabari, 2020; Wing et al., 2018). Increasing trends in frequency and risk are not uniform 
across spatial regions with work by Slater and Villarini (2016) indicating that trends are increasing across the US 
Midwest and Great Lakes regions while decreasing in the coastal Southeast, Southwest, and California.

1.1. Operational Forecasting

Operational flood forecasting systems are primary tools in developing accurate forecasts for public awareness 
prior to life threatening and property damaging events. One of these operational systems is the Advanced Hydro-
logic Prediction System (AHPS) maintained by the National Oceanic Atmospheric Administration (NOAA) 
National Weather Service (NWS) with thousands of forecasting points across the US at typically short forecast 
horizons of 24 or 72  hr (McEnery et  al.,  2005). AHPS utilizes a variety of techniques including distributed 
modeling (Duan, 2003; Koren et al., 2004; Reed et al., 2004), ensemble forecasting (Day, 1985; Herr et al., 2002; 
Mullusky et al., 2002; Seo et al., 2000), hydraulic routing (Cajina et al., 2002; Fread, 1973), multi-sensor precip-
itation methods (Bonnin, 1996; Breidenbach et al., 1999; Kondragunta, 2001; Seo & Breidenbach, 2002), flood 
inundation mapping (Cajina et al., 2002), and calibration techniques (Duan, 2003; Gupta et al., 2003; Hogue 
et al., 2003; Parada et al., 2003; Z. Zhang, 2003). AHPS provides forecasting services in the form of ensemble 
streamflows at more than 3,600 locations and flood inundation maps (FIM) at more than 150 of those points 
shown in Figure 1. Additionally, two forecasting networks, Full Resolution (FR) and Mainstems (MS) stream 
networks, relevant to the National Water Model (NWM) (see Section 1.2) are rendered in Figure 1. The FR 
network refers to the entire NWM forecasting domain while MS refers to the subset of the FR network that is at 
or downstream of AHPS forecasting points (see Section 1.2). On an approximate basis, there is only one forecast 
point every 1,450 km of river (FR) and one forecast point with FIM every 29,000 km of river (FR). Despite the 
AHPS advances in operational flood forecasting, it lacks sufficient domain coverage, spatial resolution, and 
long-range forecast horizons to address the increasingly complex water challenges facing the US.

1.2. National Water Model

Additional work is required to address the gaps that the AHPS leaves in terms of spatial resolution, spatial cover-
age, and temporal forecast horizons. In response to growing stakeholder demand for enhanced and integrated water 
resource forecasts, the Office of Water Prediction (OWP) at the National Water Center (NWC) along with its part-
ners at the National Center for Atmospheric Research (NCAR) have developed and implemented operationally 
the NWM which is a configuration of the Weather Research and Forecasting Hydrologic Model (WRF-Hydro) 
(Cosgrove et al., 2019; Gochis et al., 2021; Salas et al., 2018). The NWM forecasts river discharges at more than 
2.7 million forecast points at a variety of time horizons including lookback-range (3–28 hr), short-range (18 hr), 
medium-range (10 days) and long-range (30 days) forecast horizons. The NWM enhances the spatial and tempo-
ral domain of the current AHPS capabilities operated at the 13 River Forecast Centers (RFC) in areas known 
as “hydro-blind.” As a complement to the operational NWM, RFC forecasts from AHPS forecast points are 
assimilated in the NWM and routed downstream to the next downstream AHPS forecast point where the process 
iterates again. This assimilation into the NWM is used to enhance forecasting skill by leveraging best available 
regional-scale forecasts. The river network upon which this special assimilation technique operates on is herein 
referred to as the Mainstem (MS) stream network. Figure 1 shows the NWM V2.1 FR stream network as well as 
the NWM V2.1 MS network. The MS network contains roughly 120 thousand forecasting points or roughly 4.4% 
of the reaches of the FR stream network.

The National Hydrography Data set Plus (NHDPlus) V2.1 is the basis for the “hydrofabric” in the NWM due 
to its comprehensive use with the hydrologic communities' stakeholders (McKay et  al.,  2012; NHDPlusHR 
GDB, 2021). The term “hydrofabric” is used within the NWM jargon to describe the subset of hydrography 
composed of the geospatial data sets required for hydrologic modeling including but not limited to stream 
networks, catchments, channel properties, and elevation data. The NWM provides stream forecasts at these hydro-
fabric segments using the Muskingum-Cunge method to reduce computational requirements of a continental scale 
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model but fails to consider backwater dynamics (Bedient et al., 2008; Gochis 
et al., 2021; Ponce & Changanti, 1994). The need for high resolution FIM at 
10 m or better requires additional post-processing from the principal output 
of the NWM which is forecast river discharges at the reach scale. The use of 
a 2-dimensional (2D) hydrodynamic model across a continental-scale and 
high spatial resolutions is very cost prohibitive especially in an operational 
setting. The Height Above Nearest Drainage (HAND) terrain model is one 
such technique that can be used, along with synthetic rating curves (SRC), 
to convert 1-dimensional (1D) riverine discharges to stages, and finally to 
inundation extents.

1.3. HAND

Nobre et al. (2016) showed evidence for utilizing the drainage normalizing 
HAND data set as a proxy for flood potential to make static flood inundation 
maps from known stages. The terrain index also provides additional utility 
in the observation of riverine flood inundation mapping from remote sensing 
especially in areas of high electromagnetic interference such as vegetated 
and anthropogenic areas (Aristizabal et al., 2020; Aristizabal & Judge, 2021; 
Huang et al., 2017; Shastry et al., 2019; Twele et al., 2016). Zheng, Tarboton, 
et  al.  (2018) developed a methodology for determining stage-discharge 
relationships known as SRCs by sampling reach-averaged parameters from 
HAND data sets and inputting into the Manning's equation (Gauckler, 1867; 
Manning et  al.,  1890). This collection of methods, coupling HAND with 
SRCs, have been experimented with and compared to other sources of FIM 

including engineering scale models, in-situ observation, and remote sensing based observation with solid results 
in large spatial scale applications (Afshari et al., 2018; Godbout et al., 2019; Garousi-Nejad et al., 2019; Hocini 
et  al.,  2020; Johnson et  al.,  2019; Nobre et  al.,  2016; Teng et  al.,  2015, 2017; J. Zhang et  al.,  2018; Zheng, 
Maidment, et al., 2018).

1.4. HAND's Assumptions and Limitations

HAND operates on many underlying assumptions since it can only be used as an inundation proxy or no physics 
model and thus, not a true hydrodynamic inundation model (Nobre et al., 2016; Y. Y. Liu et al., 2016; Y. Liu 
et al., 2020). HAND, to our knowledge, has only been applied to natural, inland, and riverine inundation appli-
cations thus it is also missing pluvial, coastal, ground water, and dam break components among other possible 
sources of flooding. Additionally, in order to flood an area, HAND assumes all areas eligible for inundation 
must drain to some nearest flowpath which is used for catchment allocation and relative elevation calculation 
(Garousi-Nejad et al., 2019; Hocini et al., 2020; Johnson et al., 2019; Y. Y. Liu et al., 2016; Y. Liu et al., 2020; 
Maidment, 2017; Nobre et al., 2011, 2016; Rennó et al., 2008; Zheng, Maidment, et al., 2018; Zheng, Tarboton, 
et al., 2018). Stream thalweg networks must also collectively drain to a singular outlet point for a given processing 
region (Nobre et al., 2016; Rennó et al., 2008; Zheng, Maidment, et al., 2018). Since elevations don't naturally do 
this, they must undergo a long series of hydro-conditioning processes to enforce monotonically decreasing eleva-
tions across an entire processing unit along with hydrologically correct directions of flow (Donchyts et al., 2016; 
Nobre et al., 2011, 2016; Rennó et al., 2008; Y. Y. Liu et al., 2016; Y. Liu et al., 2020). The level of digital eleva-
tion map (DEM) manipulation required to enforce this assumption can be substantial depending on the region and 
can be a significant source of error. The drainage enforcing assumption also interacts with an inability to properly 
account for fluvial inundation in regions of DEM depressions that lack natural drainage to riverine areas (Nobre 
et al., 2016; Rennó et al., 2008).

When used for FIM applications, HAND assumes only fluvial inundation sourced from its nearest flowpath is 
accounted for (McGehee et al., 2016; Nobre et al., 2016). Catchments are independent of one another for FIM 
purposes meaning a reaches' stage value is only used to threshold the HAND values within its respective catch-
ment (Y. Y. Liu et al., 2016; Zheng, Maidment, et al., 2018; Zheng, Tarboton, et al., 2018). This assumption plays 
to the “Nearest Drainage” term in HAND and creates a significant limitation within HAND for FIM applications 

Figure 1. Forecast points with and without Flood Inundation Maps (FIM) in 
United States' Advanced Hydrologic Prediction System (AHPS). Note that 
only a small fraction of the AHPS forecast points have existing FIM. Also 
shown are the National Water Model (NWM) stream networks at the Full 
Resolution (FR) and Mainstems (MS) resolution. The FR network constitutes 
the entire NWM stream network while the MS resolution network is the FR 
network at or downstream of the AHPS forecast points shown.
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(Li et al., 2020; McGehee et al., 2016; Nobre et al., 2016; J. Zhang et al., 2018). At the junction of high stream 
order and high flow rivers with lower flow tributaries, there can be a lack of inundation extents exhibited which 
is known colloquially in the forecasting community as the “catchment boundary problem.” The academic 
community has somewhat referenced this issue before but it has been characterized more as a problem with the 
stream delineation process that comes from thresholding the drainage accumulation maps (Li et al., 2020; Nobre 
et al., 2016). Later in this study, we will re-introduce this problem and demonstrate how we initialize with a 
stream network (that of the NWM's) and thus avoid having to threshold accumulations to some arbitrary value to 
define stream networks. We illustrate how computing HAND independently for flowpaths of unit stream order 
can significantly enhance FIM performance by accounting for multiple sources of fluvial inundation that may 
exist in certain regions and flow scenarios.

1.5. HAND Implementations

Due to significant advances in high performance computing (HPC) and large scale high resolution DEMs such 
as the 3D Elevation Program (3DEP) seamless at the 1/3 arc-sec (approximately 10 m depending on latitude) 
scale, HAND has been implemented into software for large-scale, continental computation. As part of the OWP's 
Innovators Program and NWC's Summer Institute, the National Flood Interoperability Experiment (NFIE) gener-
ated FIM hydrofabric (will be used interchangeably with the datasets produced by HAND) rapidly on a HPC 
(Maidment, 2017; Y. Y. Liu et al., 2016). NFIE used open-source dependencies including the Terrain Analy-
sis Using Digital Elevation Models (TauDEM) (Tarboton, 2005) and the Geospatial Data Abstraction Library 
(GDAL) (Warmerdam, 2008) to compute HAND for the Continental United States (CONUS) at 331 Hydrologic 
Unit Code (HUC) 6 processing units in 1.34 central processing unit (CPU) years. By allocating 31 nodes at 20 
cores per node for a total of 620 available cores to the overall operation, it enabled the production to finish up 
in 36 hr consuming 3.2 terrabyte (TB) of peak memory and 5 TB of total disk space. Originally, NFIE utilized 
the NHD Medium Resolution (MR) to enforce flowpaths prior to further conditioning but more recent work has 
advanced this to the more current NHDPlus High Resolution (NHDPlusHR) which better agrees with the 10 m 
DEM from the NHDPlusHR program (Y. Liu et al., 2020). The original NFIE data set was employed by the NWC 
as an unofficial demonstration to produce forecast FIM from the NWM for additional guidance in hydro-blind 
regions. Further work by Djokic  (2019), implemented a series of improvements to HAND including equidis-
tant reaches, updates to use with NHDPlusHR hydrography, and AGREE DEM reconditioning (Hellweger & 
Maidment, 1997) into an ESRI Arc-Hydro workflow with use in ArcGIS. More notably the software added the 
ability to derive HAND on both the NWM FR and MS stream networks to consider multiple sources of fluvial 
inundation along high impact rivers of primary forecasting concern.

Related to these efforts, the United States Geological Survey (USGS) has invested in relative elevation HAND-
like methods via work in the GIS Flood Tool (GFT) that also uses SRCs with cross-sections for stage-discharge 
relationships (Verdin et al., 2016). Additional investment by Petrochenkov (2020) was able to successfully scale 
this approach by transitioning the method to open-source Python source code (PyGFT) and implementing novel 
interpolation methods to help address some of the catchment boundary discontinuities discussed more in this 
paper. In addition to the domestic work done in the US, some studies have expanded upon HAND to cover global 
domains at 30 m resolutions (Donchyts et al., 2016; Yamazaki et al., 2019).

1.6. Office of Water Prediction Flood Inundation Mapping

In order to mitigate the ever increasing threat of flooding to life and property, an operational capability is required 
to extend NWM streamflow forecasts to river stages and inundation extents. OWP FIM is introduced here as a 
continental scale capability that generates these products at high spatial and temporal resolutions. Here we intro-
duce OWP FIM that utilizes a few of the latest techniques in HAND based FIM oriented for use with the NWM 
in continental scale operational forecasting settings. Within the operational framework of OWP FIM, we intro-
duce research demonstrating how FIM performance skill with HAND can be improved by discretizing stream 
networks into units of an effective unit Horton-Strahler stream order (Horton, 1945; Strahler, 1952) for HAND 
computation contexts.

Previous authors dating back to the first HAND for FIM work by Nobre et al. (2016) have noted a sensitivity of 
mapping skill to the stream accumulation threshold which is closely related to stream density and the maximum 
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Horton-Strahler stream order (or simply stream order) of the processing 
unit employed (Li et al., 2020; McGehee et al., 2016; J. Zhang et al., 2018). 
HAND produced FIMs are limited in only providing inundation sourced from 
the nearest flowpath, however, depending on flow conditions and topogra-
phy, a given area may have multiple contributing fluvial sources of surface 
water inundation. The forecasting community, in reviewing HAND, have 
noted significant negative effects at the confluence of lower flow tributaries 
with higher flow rivers for which the phrase “catchment boundary issue” has 
been termed. In previous studies, FIM skill has been shown sensitivity to the 
drainage density of the stream network employed as the datum for HAND 
which is closely related to the maximum Horton-Strahler stream order of the 
network (Li et al., 2020; McGehee et al., 2016; Nobre et al., 2016; J. Zhang 
et al., 2018). This sensitivity is partly in due to the limitation that catchment 
boundaries place on inundation extents where only the nearest flowpath can 
source inundation for any particular area.

Figure 2 illustrates the exact situation our solution proposes to address where 
two tributaries converge with a higher order stream segment. An actual 
map with OWP FIM is generated using the NWM full-resolution stream 
network and compared with a FEMA 100 years extent (see Section 2.7 for 
more details) showing significant under-prediction in inundation extent. The 
higher discharge along the main segment in Figure 2 of 1,900 cubic meters 
per second (cumecs) does not translate to the lower flow rates along the 
tributaries of 84 and 195 cumecs. This is due to a lack of representation of 
backwater conditions in the hydraulic routing techniques used. As a parallel 
problem, there is excess water accumulated along the mainstem that cannot 
extend in either a fluvial or pluvial manner beyond the boundaries of the 
mainstem catchments.

We seek to resolve this catchment boundary problem or nearest drainage limitation by discretizing the target 
stream network into stream networks of reduced, unit stream order to avoid the constraining of catchments by 
those belonging to lower order neighbors. By discretizing the network into stream networks of unit stream order 
(later defined as level paths or LPs), we remove the influence of neighboring catchments that constrain the inun-
dation extent. This creates much larger and overlapping catchments that can source fluvial inundation from multi-
ple reaches as required by the given river stage at current flow conditions. We present two successive methods, 
National Weather Service MS (Section 2.5.1) and Generalized Mainstems (GMS) (Section 2.5.2), implemented 
that reduce the effective Horton-Strahler stream orders of the networks employed and test our presented hypothe-
sis that stream networks of unit stream order enhance quality of FIM extents produced with HAND by expanding 
the nearest drainage definition to increase potential inundated areas.

Here we demonstrate how reducing a HAND processing unit's stream network into discrete LPs of singular, 
effective stream order, can enhance FIM skill by accounting for multiple possible sources of fluvial inundation. 
This capability is introduced progressively as MS (whose network represents about 4% of FR network) and to 
a higher degree GMS (covers entire FR network) which will be explained later on. The following methods and 
results describe the work in more detail and demonstrate its efficacy in producing enhanced FIM for the NWM.

2. Materials and Methods
OWP FIM is a fully operational pipeline of software tools to help acquire datasets, cache hydrofabrics, produce 
FIMs, and evaluate results. Figure 3 gives a high level overview of the methodology used in OWP FIM and in 
this study. Input data from multiple sources are preprocessed (not illustrated) and then subset to processing areas 
based on the model used, FR, MS, or GMS. The standard processing unit of OWP FIM is a HUC8 and the entire 
NWM FR stream network is used for enforcment. Later, we explain how only the NWM MS stream network is 
used for the MS version of HAND, while for GMS, the FR stream network is discretized into LPs before comput-
ing HAND. A series of hydro-conditioning steps enforces the location of flowpaths, monotonically decreasing 
elevations, excavated bathymetry, stream thalweg breaching, and levee enforcement. After a DEM suitable for 

Figure 2. The figure represents an agreement map between a HAND derived 
FIM and one produced from the Base Level Engineering (BLE) program 
for a 100 years magnitude event at HUC8 12090301. Agreement maps are 
symbolized by false negatives (FN), true negatives (TN), false positives (FP), 
and true positives (TP) where inundated represents the positive condition 
(see Section 2.7 for more details). The streamflows associated with each river 
segment are shown in cumecs while the flow directions are symbolized as red 
arrows. The presence of FNs at the confluence of tributaries (circled in red) 
with the main segment is associated with lower flow rates in the tributaries 
that don't account for backwater effects. Additionally, the flow of 1,900 
cumecs from the main segment cannot extend to the neighboring catchments 
belonging to its tributaries shown here. Water pools up vertically along the 
catchment boundaries of the higher order segment distorting rating curve 
behavior (Section 4). Sourcing fluvial inundation from HAND is limited to 
only its nearest flowpath which is the main issue this study aims to address.
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HAND's assumptions is conditioned, the FIM hydrofabric is generated including stream network, catchments, 
HAND, SRCs, and cross-walk table. The FIM hydrofabric is defined as the datasets required to make an inunda-
tion map from discharges including the relative elevation model (REM) or HAND grid, the catchments in vector 
and raster form, and the hydro-table (contains SRC and cross-walk information). In operational circumstances, 
the NWM streamflows are used in conjunction with the FIM hydrofabric to derive forecast FIMs. However for 
evaluation purposes, we use the streamflows from the cross-sections of our benchmark model. As later discussed 
in Section 2.6, independent FIMs from multiple fluvial sources are mosaiced together. For the case of MS, two 
sources are mosaiced together (FR and MS) while for GMS the inundation from every LP is composited together. 
The evaluation FIM extents are compared to the extents of the benchmark model and metrics are computed.

2.1. Software Dependencies and Architecture

OWP FIM exclusively utilizes free and open source software dependencies including Python 3, GDAL, TauDEM, 
Geographic Resource Analysis Support System (GRASS), GNU Parallel, and MPICH (Amer et al., 2021; contrib-
utors, 2020; G. D. Team, 2020; P. C. Team, 2019; Tange, 2015; Tarboton, 2005). Within the Python 3 ecosystem, 
many common packages are employed including but not limited to RichDEM, GeoPandas, Rasterio, Rasterstats, 
and Numba (Barnes, 2018; Jordahl, 2014; Lam et al., 2015). To simplify setup and enhance portability across 
host operating systems, OWP FIM packages all dependencies up in a Docker image (Merkel, 2014). A user only 
needs to install Docker on their host machine and build the image from the provided recipe. Source code is made 

Figure 3. Methodology overview detailing high level steps followed in the study. The flow chart begins with the input data 
organized by source. Subsetting the data into processing units depends on which model is being considered. FR utilizes 
the entire NWM stream network processed at HUC8 processing areas. MS only computes HAND using the NWM stream 
at or downstream of legacy forecasting points. The resulting inundation from the MS HAND is eventually layered with the 
FIM from FR HAND to account for high levels of inundation contributed by the mainstem. Generalized Mainstem (GMS) 
discretized NWM streams into level paths (LP) then computes HAND and the FIMs independently only to mosaic them later. 
This better accounts for multiple possible sources of fluvial inundation. The dotted lines denote the use of NWM streamflow 
forecasts to produce operational FIM but not used in this study. All acronyms used in the figure are defined in the paper.



Water Resources Research

ARISTIZABAL ET AL.

10.1029/2022WR032039

7 of 31

available for this project where a user could consult the Readme.md page for more information on how to acquire 
the data sets and reproduce the pipeline (Aristizabal et al., 2022b, 2023).

2.2. Data Sets

Data sources used within OWP FIM are publicly available from a variety of government sources including the 
USGS, NWC, Federal Emergency Management Agency (FEMA), and US Army Core of Engineers (USACE) to 
enhance reproducibility and collaboration among government, academia, and industry. Instructions for accessing 
data processed for OWP FIM are provided on the project's GitHub or HydroShare page via an Amazon Web Services 
(AWS) S3 bucket furnished by the Earth Science Information Partners (ESIP) (Aristizabal et al., 2022a, 2022b, 2023). 
The National Hydrography Data set Plus High Resolution (NHDPlusHR) Beta Version is the latest hydrography 
data set used for land surface hydrologic modeling in the US (Moore et al., 2019). We utilized a series of data 
products from the NHDPlusHR including the BurnLineEvents (NHDPlusHR GDB, 2021), Value Added Attributes 
(VAA) (NHDPlusHR GDB, 2021), Water Boundaries (WBD) or HUC Layers (NHDPlusHR WBD, 2021), and the 
DEM elevation rasters (NHDPlusHR DEM, 2021). These BurnLines used in conjunction with the hydrofabric of 
the NWM V2.1 to help define flowpaths for OWP FIM while the NWM hydrofabric is also used to define reser-
voirs for exclusion and catchments to cross-walk against for forecasting purposes (NWM Hydrofabric V2.1, 2021). 
For enforcing levee data, the USACE NLD is used to burn feature elevations into DEMs (ENGINEERS, 2021). 
Since NHDPlusHR data sets extend beyond land borders into sea and Great Lake regions, we used the land-sea 
border from OpenStreetMap (OSM) (Water polygons, 2021) and the land-lake border from Great Lakes Hydrog-
raphy Data set (GLHD) (GLHD, 2020) to exclude those areas from production of FIMs. Additionally, the Base 
Level Engineering (BLE) datasets within FEMA Region 6 spanning parts of nine states including Colorado, New 
Mexico, Texas, Oklahoma, Kansas, Arkansas, Louisiana, Missouri and Mississippi at two recurrence intervals, 1% 
(100 years or yr) and 0.2% (500 years or yr), are used for validation in this study and furnished by the Interagency 
Flood Risk Management (InFRM) consortium (Base Level Engineering (BLE) Tools and Resources, 2021; estBFE 
Viewer, 2021). These BLE data sets are provided at the watershed scale (HUC8) utilizing best available DEMs and 
simulations from the Hydrologic Engineering Center's River Analysis System (HEC-RAS) model (USACE, 2022). 
The full input data sets presented by source are listed in Table 1.

Areas with all the required data (from the NWM and the USGS) are labeled as the FIM domain which includes 
2,188 HUC8s for the FR and GMS networks and 1,604 HUC8s for the MS method. These methods will be 

Table 1 
Data Sources, Names, Descriptions, and Citations

Source Name Description Citations

USGS NHDPlusHR BurnLineEvents Flowpaths used by NHDPlusHR for hydro-enforcement. NHDPlusHR GDB (2021)

USGS NHDPlusHR Value-Added Attributes Database of additional attributes associated with the BurnLineEvents that 
enhance navigation, analysis, and display.

NHDPlusHR GDB (2021)

USGS NHDPlusHR DEM DEM used for NHDPlusHR at 1/3 arc-sec (10 m) spatial resolution and 
vertical units in centimeters.

NHDPlusHR DEM (2021)

USGS NHDPlusHR WBD Water Boundaries (WBD) or HUCs used for spatial processing units. NHDPlusHR WBD (2021)

NOAA-OWP NWM Streams Flowpaths used by NWM for routing and forecasting adapted from NHDPlus 
V2 NHDFlowline_Network feature class.

NWM Hydrofabric 
V2.1 (2021)

NOAA-OWP NWM Catchments Surface drainage area corresponding to each reach in the NWM adapted 
from NHDPlus V2 Catchment feature class.

NWM Hydrofabric 
V2.1 (2021)

NOAA-OWP NWM Waterbodies Waterbodies considered by the NWM as reservoirs or lakes adapted from 
NHDPlus V2 NHDWaterbody feature class.

NWM Hydrofabric 
V2.1 (2021)

USACE NLD Levee database of locations and elevations. ENGINEERS (2021)

OSM Land-Sea Border Border of land and sea. Water polygons (2021)

GLHD Land-Great Lakes Border Border of land and Great Lakes. GLHD (2020)

InFRM Cross-Sections HEC-RAS 1D cross-sections used for modeling in BLE data sets. Includes 
discharges for 1% and 0.2% recurrence interval events.

estBFE Viewer (2021)

InFRM Flood Inundation Extents Inundation extents produced by InFRM BLE HEC-RAS 1D for 1% and 0.2% 
recurrence interval events.

estBFE Viewer (2021)
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explained in more detail later. An enhancement of OWP FIM over previous HAND based FIM versions is the 
support for Hawaii and Puerto Rico which are expansion domains in the NWM V2.0 and V2.1, respectively.

2.3. Hydro-Conditioning

The DEM is subject to a series of hydro-conditioning procedures to enhance its suitability for riverine flood 
inundation mapping with HAND. These techniques are specific for making OWP FIM and differ from the condi-
tioning methods used by the NHDPlusHR Beta (Moore et al., 2019). HAND inherently requires all areas eligible 
for inundation to drain to the designated drainage network. So to satisfy this requirement, DEMs must undergo 
significant manipulation. In other words, all areas within a given processing unit for HAND must have monoton-
ically decreasing elevations to enable eligiblity for flooding. Hydro-conditioning is implemented to obtain many 
objectives including enforcing the location of hydrologically relevant features such as flowpaths, lakes, or drain-
age divides whether natural or anthropogenic. It can also be used to simulate more accurate bathymetry which is 
not accounted for in the 10 m DEM (Gesch et al., 2002).

Specifically within the context of OWP FIM, the hydro-conditioning operations that take place in sequential 
order are presented. Prior to any hydro-conditioning, all input data sets must be subset from their original spatial 
domain scales into the processing units of size HUC8. The subsetting is done by spatial query for the cases of 
the levees, DEM, and NWM hydrofabric while the NHDPlusHR BurnLineEvents are subset via attribute query 
for the given reach code's membership in the processing unit. Hydro-conditioning raster operations take place on 
buffered boundary definitions to avoid edge contamination and effects (Lindsay & Seibert, 2013).

2.3.1. Stream Network Enforcement

Both the location and geometry of the stream network are enforced to agree with the NWM stream network and to 
enforce synthetic bathymetry and generate more hydrologically correct catchments. The NHDPlusHR Beta Burn-
LineEvent layer is used to enforce stream locations in the NHDPlusHR workflow and best agrees with thalweg 
locations in the DEM used so it is also used here for hydro-enforcement (Moore et al., 2019). This network goes 
through a stream density reduction procedure to better match the stream density of the NWM stream network. 
This reduced density NHDPlusHR network is now used for hydro-enforcement along with the AGREE DEM 
Surface Reconditioning System to excavate channels into the DEM (Hellweger & Maidment, 1997). Downsides 
to the technique include the possibility of exhibiting parallel streams where the burned stream and real stream 
are both represented (Hellweger & Maidment, 1997; W. Saunders, 1999) and some distortion of the catchment 
boundaries can also be observed (W. Saunders, 1999; W. K. Saunders & Maidment, 1996). Some of these draw-
backs are addressed by additional conditioning techniques applied later on. For more details on how we reduce 
the density of the NHDPlusHR stream network along with technical implementation information on the AGREE 
DEM procedure, please see Appendix A.

2.3.2. Levee Enforcement

Coarse DEM's at 10 m, 30 m, and higher resolutions can lack sufficient representation of fine grain features such 
as embankments, flood walls, and closure structures (Arundel et al., 2018; Dobbs, 2010; Sanders, 2007; Wang & 
Zheng, 2005). In order to better represent the influences of these features upon hydraulics and inundation extents, 
the National Levee Database (NLD) published by USACE was used to enforce elevations within the 1/3 arc-sec 
DEM. The elevations found in the NLD are burned onto the DEM if those elevations were found to exceed those 
already in place.

2.3.3. Depression Filling

Local depressions are naturally occurring features of a DEM but must be addressed to derive a connected drain-
age network with continuous catchments for flood modeling purposes with HAND. The partially conditioned 
DEM was removed of depressions by filling areas with pits while preserving the stream and levee information 
previously enforced. Priority-Flood developed by Barnes et al. (2014b) is an algorithm for filling said depressions 
and shown to have improved performance over early works in the field by Jenson and Domingue (1988) imple-
mented in Tarboton (2005) as well as Planchon and Darboux (2002). The depression filling algorithm used in our 
pipeline is a Priority-Flood variant developed by Zhou et al. (2016) with enhanced single-thread performance and 
a time complexity of O(n log n) for floating point grids. This performance was enabled by limiting the processing 
queue with a region-growing method to exclude many of the slope cells (Zhou et al., 2016). The depression filling 
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technique employed here does leave the existence of flat regions where pits previously existed thus later requiring 
the need for resolving these flats. The enhanced variant of Priority-Flood is implemented and made available by 
Barnes (2018) and Zhou et al. (2015).

2.3.4. Stream Thalweg Elevation Conditioning

Thalweg elevations are critical components of relative elevation based inundation mapping thus much is 
performed to ensure the best available, monotonically decreasing, elevations are derived prior to the normalizing 
of elevations. Work on the AGREE DEM method from several authors have illustrated that the AGREE DEM 
method does not prevent situations where the burned thalweg and the thalweg endemic to the DEM run paral-
lel to one another (Baker et al., 2006; Hellweger & Maidment, 1997; Quenzer, 1998; W. Saunders, 1999; W. 
Saunders & Maidment, 1995; W. K. Saunders & Maidment, 1996). These works observe that the artificial eleva-
tions enforced by the hydrographically based stream network and AGREE DEM disagree with those naturally 
occurring in the native DEM. In order to mitigate this documented issue, the normalized excavation algorithm 
(W. Saunders, 1999) is used to seek a zonal (nearest neighbor) elevation minimum on the original, unconditioned 
DEM for each thalweg pixel. Each zone is defined as the thalweg's pixel nearest neighborhood within a maxi-
mum distance of 50 m. The zonal minimum is computed for each thalweg pixel zone and the minimum is used to 
replace the existing thalweg elevation value. This step essentially enforces an estimate of the native DEM thalweg 
elevations onto the sharp drop enforced thalweg elevations from the AGREE procedure.

The next step involves conditioning these local minimums along the thalweg to enforce monotonically decreasing 
thalweg elevations for FIM. Garousi-Nejad et al.  (2019) proposed an algorithm that breaches stream thalweg 
pixel elevations in a depth first manner. This procedure was found to increase the Critical Success Index (CSI) of 
resulting FIMs from HAND and is employed in OWP FIM to enforce monotonically decreasing elevations with 
thalweg pixel networks.

2.4. Deriving FIM Hydrofabric

The FIM Hydrofabric is defined here as the collection of geospatial datasets that are used for converting NWM 
discharges into inundation extents. These datasets include the HAND or relative elevation model (REM) raster, 
reach-level catchments raster/polygons, DEM-derived flowpaths, SRCs, and cross-walk table. Within the context 
of this section, we refer to HAND as a grid of relative elevations to detrend elevations away from mean level 
toward elevations referenced to the nearest flowpath (See Section 2.4.4). SRCs are considered stage-discharge 
relationships that are derived synthetically using the Manning's equation (See Section 2.4.5). Lastly, a cross-walk 
table attempts to conflate NWM reach identifiers to those derived of the FIM stream network (See Section 2.4.6). 
The following sub-sections describe how the subset and hydro-enforced geospatial datasets are converted into 
the FIM hydrofabric.

2.4.1. Flow Directions and Flats Resolution

To facilitate the generation of a connected stream network and its associated catchments from the conditioned 
DEM, the depression-filled DEM is used to derive connectivity in the form of D-8 flow directions (O’Callaghan & 
Mark, 1984). Flat resolution from flats endemic to the DEM or from depression filled regions is a costly, non-trivial 
procedure which was originally addressed by Garbrecht and Martz (1997) where flats are resolved by incrementing 
elevations iteratively. OWP FIM utilized a CyberGIS implementation of the D-8 flow direction algorithm with the 
accelerated resolution of flats which we found efficient and effective (Y. Liu et al., 2016; Survila et al., 2016). For 
more information on the derivations of flow directions and resolving flats, please see Appendix B.

2.4.2. Deriving FIM Stream Network

The derivations of relative elevations and catchments from the newly conditioned DEM involves re-deriving a 
new, DEM based, FIM stream network. The FIM stream network is of similar drainage density as the NWM V2.1 
network and fully converges at all junctions leaving no divergences in the network. This is accomplished by using 
the seed points generated from the stream network enforcement process (Section 2.3.1 and Appendix A). These 
seeds points are headwater locations of the NHDPlusHR Beta BurnlineEvents layer that spatially correspond 
to the headwater definitions in the stream network of the NWM V2.1. Feeding the seed points and previously 
computed flow directions into flow accumulation methods (Tarboton, 1997, 2005; Wallis et al., 2009) yields a 
stream link accumulation raster that can be converted to a vector file for further processing.
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Each stream link in this derived FIM stream network is split into equidistant reaches of 1.5 km in length which is 
a user exposed parameter. Stream links are defined here as segments of rivers discretized by junctions with other 
NWM river segments. Stream links are then further segmented at NWM lakes and HUC8 boundaries. Discre-
tizing at NWM lakes isolates reaches and catchments associated with lakes and reservoirs to avoid mapping 
them using the Manning's equation and could potentially enable volume based mapping in the future as a feature 
enhancement. Based on previous research, splitting each remaining stream link into equidistant reaches not to 
exceed a parameterized value of 1.5  km helps improve SRC and mapping skill (Garousi-Nejad et  al.,  2019; 
Godbout et al., 2019; Zheng, Maidment, et al., 2018). This parameter was held constant across all versions of 
HAND that we used which are introduced in Section 2.5. Small reaches can lead to unrealistic variances in chan-
nel geometries while oversized reaches can lead to grouping too much slope variance into one discretization of 
the stream network. Short stream segments that are introduced as a result of forced network breaks due to reser-
voir, levee, or HUC boundaries inherit the SRC properties of the upstream or downstream segment, depending on 
the topology. Section 2.4.5 details the derivation of the SRC and the dependence on channel length. Additionally 
every reach (and later catchment) is assigned a globally unique identifier based on the HUC8 membership. This 
stream network is important since it drives the HAND calculation and derivation of catchments.

2.4.3. Catchments

Catchments were derived using the D8 connectivity established by O’Callaghan and Mark (1984). Outlet points 
are set at the pixel center points of the delineated flowpaths explained in Section 2.4.2. The outlets act as root 
nodes in a tree structure and the connectivity is traversed to derive the contributing, nearest drainage region for 
each outlet point. Two sets of catchments are derived, one set of catchments denotes the unique drainage region 
for each thalweg pixel which is used for relative elevation calculation. The other catchments are derived for the 
drainage region for each stream reach as defined in Section 2.4.2.

2.4.4. HAND

Once the pixel level catchments are derived, the final relative elevations can be computed. To compute these relative 
elevations, we utilize the same technique found in previous HAND implementations (Garousi-Nejad et al., 2019; 
Maidment, 2017; Nobre et al., 2011, 2016; Zheng, Maidment, et al., 2018; Zheng, Tarboton, et al., 2018). For 
each pixel level catchment described in Section 2.4.3, we subtract the elevations of the non-thalweg pixels from 
the thalweg pixel of that catchment. Contrary to some of the some other previous HAND implementations, 
the DEM used for this operation is the DEM resulting from the thalweg conditioning procedures described in 
Section 2.3.4 (Djokic, 2019). This DEM utilizes the native elevations in regions outside of the excavated channel 
from the AGREE DEM method (Djokic, 2019). Any negative values resulting from this subtraction with native 
elevations are replaced by zero. Again, HAND assumes and requires processing areas to drain thus have mono-
tonically decreasing elevations with hydrologically correct flow directions all leading to a singular outlet point. 
While this is required for the generation of DEM-derived catchments and flowpaths, it is not necessarily required 
for the computation of the relative elevations. Since the use of hydro-conditioning processes to fit the drainage 
requirement for HAND can be extensive, we found it more fitting to use the native elevations this final HAND 
computation thus avoid the use of manipulated values that fit modeling assumptions.

2.4.5. Synthetic Rating Curves

A method for converting forecast river discharges from the NWM to stages or river depths at the reach scale is 
necessary for producing FIMs with HAND. For 1D hydrodynamic models such as the routing methods in the 
NWM, the typical procedure is to establish the stage-discharge relationship by sampling data from the DEM to 
derive a SRC at discrete cross-sections (Di Baldassarre & Claps, 2011; Quintero et al., 2021). For this application, 
we utilized the reach averaged approach for developing SRCs (Zheng, Tarboton, et al., 2018). The reach aver-
aged approach seeks to sample the geometry parameters in the Manning's equation (Gauckler, 1867; Manning 
et al., 1890) on a reach scale then dividing those by length. Previously not reported in literature to our knowledge 
in this form, the reach averaged Manning's formula is derived as

𝑄𝑄(𝑦𝑦) =
1

𝑛𝑛

𝑉𝑉 (𝑦𝑦)5∕3𝑆𝑆1∕2

𝐿𝐿𝐿𝐿(𝑦𝑦)2∕3
 (1)

where Q is discharge at stage y, n is the Manning's n roughness coefficient, V is volume at y, S is channel slope, L 
is the along-flow reach length, and B is wetted bed area at y. Q, V, and B are taken at specific y values so are more 



Water Resources Research

ARISTIZABAL ET AL.

10.1029/2022WR032039

11 of 31

formally written as Q = Q(y), V = V(y), and B = B(y), respectively. All units are international (SI) given the one 
in the numerator above n. The reach averaged method has been compared to rating curves from HEC-RAS and 
USGS gages yielding comparable results for estimating the river bottom elevation profile, channel width at given 
stages, and stage-discharge relationships (Zheng, Tarboton, et al., 2018). The reach averaged geometry param-
eters including number of wet cells, bed area, and volume are sampled from the thalweg conditioned AGREE 
DEM using TauDEM's catchhydrogeo utility. Using the split reaches described in Section 2.4.2, the channel slope 
is sampled from the thalweg conditioned DEM at the end points of the reaches while the same reaches are used to 
calculate the reach length. While the AGREE DEM is subject to hydro-conditioning processes, it does introduce 
some notion of bathymetry estimation that the native DEMs lack while being sensitive to additional parameters 
that could yield further errors in the FIM. We leave this issue open in this study and elaborate on needs with 
respect to bathymetry and Manning's n values in the Discussion section (Section 4). We constrain the equation by 
selecting 84 stage values (y in Equation 1) from 0 to 25 m in depth at a third of a meter increments to calculate the 
discharge values for each stage value. Due to the varying nature of stage (y in Equation 1) as explained, the terms 
V(y) and B(y) also update according to previous work with reach averaged SRCs (Zheng, Tarboton, et al., 2018).

Setting of the Manning's n roughness coefficient has precedent in previous continental-scale FIM (CFIM) studies 
(Djokic, 2019; Garousi-Nejad et al., 2019; Y. Y. Liu et al., 2016; Y. Liu et al., 2020; Maidment, 2017; Zheng, 
Maidment, et al., 2018) with two noted values of 0.05 and 0.06 for NFIE and Djokic (2019) respectively. These 
values are applied universally to the entire forecasting domain across space, time, and discharge profiles. We 
note significant opportunity to enhance CFIM skill by better localizing Manning's n according to available data 
including but not limited to land cover, land use, stream order, stream geometry, drainage area, reach length, and 
discharge percentiles (Garousi-Nejad et al., 2019; Godbout et al., 2019; Johnson et al., 2019; Zheng, Tarboton, 
et al., 2018). For now and for the purpose of this study, we examine the SRCs with Manning's n set to both 0.06 
and 0.12 which we hope will shed some light on the sensitivity of this parameter to HAND based FIMs.

2.4.6. Cross-Walking With NWM Stream Network

The DEM based stream network derived in Section 2.4.2 must be associated with NWM reach identifiers so that 
a discharge can be converted to stage and later inundation extents. For the FR version of HAND, we overlap 
the reach catchments derived in Section 2.4.3 with the NWM catchments matching the ID of the NWM catch-
ment that most overlaps the derived catchment for HAND. For two subsequent HAND methods, MS and GMS, 
discussed in Sections 2.5.1 and 2.5.2, respectively, we find the mid-point of the derived stream reach described in 
Section 2.4.2 and find the NWM catchment that contains the mid-point. Additionally, only relevant catchments 
from the NWM for the given LP are selected for cross-walking for methods in Sections 2.5.1 and 2.5.2. While 
these conflation methods are approximate, they can lead to some substantial errors which will be discussed more 
in Section 4.

2.5. Stream Order Reduction

As previously discussed, HAND based FIMs are subject to many assumptions and limitations in order serve as 
a suitable inundation proxy for large scale, high resolution domains. As introduced in Section 1.6, HAND based 
FIMs fail to account for multiple sources of fluvial inundation which leads to flow constrictions at high flow 
confluences. We hypothesized that reducing the scale of HAND computation down to stream networks of unit 
Horton-Strahler stream order can help account for multiple fluvial sources of inundation. To clarify the phrase 
“reducing Horton-Strahler stream order” used extensively in this paper, every FIM used in evaluation contains 
a flood extent sourced from every NWM forecast point in the given evaluation domain. What we do to reduce 
stream order is discretize the NWM FR network into different units of size, MS network (2.5.1) and GMS LPs 
(2.5.2), that effectively reduce the HAND computation to independent networks of unit stream order. These inde-
pendent HAND data sets are later used to produce FIM independently and mosaiced together (see Section 2.6). 
The inundation from the MS HAND is mosaiced with the inundation from FR HAND, while the inundation of 
each individual LP from GMS is mosaiced together. The Horton-Strahler stream order is only reduced for HAND 
computation purposes to reduce the negative effects of the nearest drainage limitation inherent to HAND.

2.5.1. NWS Mainstems

The initial attempt at drainage order reduction to solve the catchment boundary issue was to use a stream network 
relevant to the NWS forecasting community. The Mainstems (MS) network is a subset of the NWM FR network 
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at and downstream of AHPS forecast points as seen in Figure 1. The MS network comprises about 200 thousand 
km of stream length which is less than 4% of the FR total stream length of 5.5 million km. It also spans 121,724 
reaches across 1,608 HUC8s. In this technique, we derive HAND using the FR stream network as well as the MS 
network which was originally proposed by Djokic (2019). Inundation is derived independently from the resulting 
FR and MS HAND hydrofabrics and are mosaiced together using the technique proposed in Section 2.6 to form 
the MS FIMs. Within each HUC, one might typically only find a MS stream network of uniform stream order but 
this can vary if more than one AHPS forecasting point is found within or upstream of the HUC in question. So 
while we may refer to the MS network as that of one with unit stream order, we acknowledge there are many cases 
where additional or converging forecast points create multiple branches within a given processing unit.

2.5.2. Generalized Mainstems

Since MS only covers 4% of the entire FR stream network, we sought to expand drainage order reduction tech-
niques to all reaches within the NWM modeling domain. In order to do this, we discretized the NWM network 
into LPs which when considered individually have unit Horton-Strahler stream orders. LPs group flowpaths by 
maximizing the length of each flowpath and minimizing the number of LP identifiers within a given domain 
(McKay et al., 2012; Moore et al., 2019). In order to derive LPs for the NWM FR stream network at the HUC8 
processing area, we first compute arbolate sums which are defined as the cumulative drainage distance of all 
upstream flowpaths. Arbolate sum is also inclusive of the current drainage reach as well. Arbolate sums are 
computed by starting at the headwater points and summing up drainage distances as you traverse downstream.

Arbolate sum is critical to discretizing the NWM network into LP identifiers. Starting at a HUC8's outlet, a 
unique LP is propagated upstream. At every confluence, the direction of maximum arbolate sum is sought to 
propagate the current LP identifier. For the remaining parent reaches of the given junction, a new LP identifier 
is assigned and the process recursively continues with them. Figure 4 illustrates how LPs (symbolized by unique 
colors) are propagated upstream by the value of arbolate sum. The figure shows computed arbolate sums and 
unique LP identifiers on a headwater subset of HUC8 (12020002) for clarity but were computed at the corre-
sponding HUC8. The mainstem of the figure runs from the red ellipses to the black one which is the outlet. From 
the figure, we can see how unique colors are propagated in the direction of the maximum arbolate sum.

Each HUC8 is discretized into LPs independently and the relevant inputs as described in Table 1 are assigned 
to each LP processing unit given a buffer of seven km. This buffer was selected to avoid edge contamination 
(Lindsay & Seibert,  2013) and to ensure adequate data availability for wide rivers with large catchments in 
regions with low slope. Further work could be dedicated to tune this user exposed parameter to better balance its 
effect on FIM extents and computational expense since larger buffers create additional floating point calculations 
and storage requirements. For the time being, we designate this issue out of scope.

At the LP scale, the methods in Sections  2.3 and  2.4 are executed leaving out any tributaries of the LP in 
question at the time. The only exception to this is the use of the NWM stream network directly for use with 
hydro-enforcement by burning these flowpaths and seeding from its headwater points directly instead of going 
through the NHDPlusHR network as described in Section 2.3.1 and Appendix A. This decision was motivated 
by the difficulty in deriving LPs in the NWM stream network with high agreement with the LPs derived for the 
NHDPlusHR flowpaths. We found that the same algorithm to compute arbolate sums and LPs could yield enough 
disagreements associated with disordered branches or slight differences in arbolate sums that could significantly 
affect the agreement of the LP identifiers in the NWM and NHDPlusHR networks. This yielded enough error to 
justify the use of the NWM directly for hydro-enforcement operations.

Once the NWM FR stream network is discretized into LPs, we independently compute HAND using each LP as the 
target stream network used. To illustrate the GMS procedure, we reference Figure 5 to show how deriving HAND 
and FIMs from GMS works. In Figure 5a, we uniquely color code the LPs derived for the NWM stream network. For 
each one of these lines, we derive HAND and its associated datasets including catchments, crosswalks, and rating 
curves. Each LP is buffered to a polygon with a user-exposed, distance parameter of seven km that is used to subset 
the original DEM for two selected LPs in Figure 5b. We illustrate two HAND grids for two of the LPs in this HUC8 
in Figure 5c. Once the FIM hydrofabrics for each LP are generated, we can inundate them individually also shown in 
Figure 5d. Lastly, these individual FIMs are mosaiced together as explained in Section 2.6 and shown in Figure 5d.

For a more intimate look at the drainage order reduction procedure GMS, and its effects, we allude to Figure 6 
which references the same area (in HUC8 12090301) and set of river junctions as in Figure 2. The catchments and 
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flowpaths for HAND computed at the FR scale are illustrated in Figure 6a where the respective inundation at the 
100 years magnitude is heavily constrained by the limited catchment extents especially at junctions. In subsequent 
sub-figures, we show the same data sets for the HAND computation problem for this region but discretized into 
independent LPs for the main LP (b), the eastern tributary (c), and the western tributary (d). Notably, inspecting 
(b), one sees how removing the tributaries creates much larger catchments for the main LP. These catchments 
include drainage areas that would traditionally be considered nearest to the tributaries thus ineligible to receive 
inundation sourced from the main LP. The inundation extents in (b) overlap those of (c) and (d) and are mosaiced 
together by methods explained in Section 2.6.

2.6. Inundation Mapping

The FIM hydrofabric consisting of the relative elevations grid, catchments grid, catchment polygons, rating curve, 
and cross-walking data are all used to convert forecasts from the NWM into forecasts extents. For operational 
situations, one would cache the FIM hydrofabric then either produce libraries of FIM for a sample of discharges 
or stages or also produce the FIM in near real-time (NRT). From the cached FIM hydrofabric and design or 
forecast discharges including those extracted from the NWM, inundation maps can be generated at HUC8 spatial 
processing units in a rapid, parallel operation. The discharges are associated with NWM reach identifiers and 
cross-walked over to reach identifiers in the FIM hydrofabric.

Utilizing the stage-discharge relationships in the SRCs, each forecast for each catchment identifier is assigned a 
stage value. The catchments grid encoded with the reach identifiers are used to map the stages by thresholding 
to the forecast stage. We use the basic logic already established in previous works to conduct this (Y. Y. Liu 

Figure 4. Illustrates the NWM Full Resolution V2.1 stream network discretized into level paths (LP), symbolized by unique 
colors, as well as the values of the arbolate sums in km units. The LPs were derived on a HUC8 level (12020002) but only 
illustrated for a small, headwater subset of this HUC8 for clarity purposes. Arbolate sums are defined as the cumulative 
drainage distances of all upstream flowpaths. Arbolate sums are computed for the NWM network by starting at the headwater 
points then traversing downstream and adding the distances cumulatively. LPs are derived by starting at an outlet point with 
a unique identifier (ID). The unique LP ID is propagated upstream until a junction is reached where the current LP ID is 
propagated in the direction of maximum arbolate sum. The remaining converging segments at the given junction are each 
assigned a new unique LP ID and the process is repeated recursively until all reaches have been assigned a LP. Thus, LP serve 
as a proxy means of assigning membership to a given river when presented with a confluence. Each individual LP has a unit 
Horton-Strahler stream order thus serves as a great method for our proposed technique.
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et al., 2016; Maidment, 2017; Nobre et al., 2016). Mathematically, the HAND values, Hij, can be indexed by 
the reach identifiers, i, and pixel indices, j. For each forecast stage, Si, one can express the formula for Dij, a 
continuous variable denoting water depth at a given pixel with reach and pixel identifiers i and j respectively in 
Equation 2. While we do not evaluate FIM depths in this study, we do compute depths first as to threshold them 
to produce extents. For each forecast stage, Si, one can express the formula for Fij, a binary variable denoting 
inundation condition in Equation 3 in terms of Dij by simply thresholding at zero depths.

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖 −𝐻𝐻𝑖𝑖𝑖𝑖 (2)

𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑖𝑖 > 0 (3)

For the cases of MS and GMS, the inundation maps produced for the respective processing units at lower maxi-
mum stream orders must be mosaiced together to form a seamless forecast in the form of a single raster file. For 
mosaicing the depths, we select the maximum inundation depth from the all the contributing areas K index by its 
lower case character, k. Consolidating the depths using a maximum function was decided upon based on intuition 
which we believe to best represent the depth of water in an area with multiple contributing fluvial inundation 
sources. Other aggregation methods could lead to different results but were not investigated here. Equation 4 
illustrates how the maximum depth from all the contributing areas, k, to each pixel j in catchment i,

𝐷𝐷𝑖𝑖𝑖𝑖 = max
𝑘𝑘=[1,. . . ,𝐾𝐾]

𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 (4)

Figure 5. Overall procedure for GMS HAND at HUC8 12090301. In (a), we illustrate all NWM flowpaths symbolized by 
their LP with 372 unique LP IDs in this HUC. Meanwhile (b), demonstrates the DEM clipped to a seven km buffer around 
two selected LPs. In (c), we show how HAND can be computed just for each one of these two LPs independently. We also 
show inundation maps created for these two LPs in (c). In (d), we show all the inundation maps for all the LPs mosaiced 
together.
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Equation 5 illustrates the same process but for mosaicing the binary inundation maps,

𝐹𝐹𝑖𝑖𝑖𝑖 = max
𝑘𝑘=[1,. . . ,𝐾𝐾]

𝐹𝐹𝑖𝑖𝑖𝑖𝑘𝑘 (5)

For the MS and GMS methods, the contributing areas are defined differently. For MS, the FIM from MS HAND 
and FR HAND are mosaiced together to form a singular inundation map thus K is set to two for that case. For 

Figure 6. This image, with the same spatial domain as Figure 2 (HUC 12090301), demonstrates how computing HAND on level path (LP) bases leads to larger, 
independent catchments and more expansive inundation extents (100 years flows). In (a), the catchments and stream network are shown for HAND computed in 
Full-Resolution (FR) method which shows constrained inundation extents around the two junctions. (b) Demonstrates the LP associated with this region's highest order 
river. By delineating catchments at this scale independent of the neighboring tributaries, the drainage areas are allowed to expand thus allowing inundation extents to 
cover previously restricted areas. In (c) and (d), we show the flowpaths, catchments, and inundation extents of the two tributaries. Later in Section 2.6, we describe 
how the inundation in (b), (c), and (d) are mosaiced together to form one seamless inundation map. This process allows to consider for multiple, possible contributing 
sources of fluvial inundation thus enhancing FIM skill.
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GMS, all FIMs from all the LPs in a given area are mosaiced together then K is set to this number of LPs. Lastly, 
we apply Equation 3 to the mosaiced depths for the MS and GMS cases in order to obtain FIM extents which is 
the subject of our evaluations. Figures 5a and 5b, illustrate how inundation maps are created for lower stream 
order processing units then mosaiced together.

2.7. Evaluation

OWP FIM is linked with the NWM for operational purposes, utilizing streamflow inputs, to produce FIM at a 
continental scale. We evaluated various validation data sources for operational use, each with its own strengths 
and weaknesses, including high water marks (HWMs) (Breaker et  al.,  2016; Musser et  al.,  2017; Watson 
et al., 2017), remote sensing observations (Aristizabal et al., 2020; Aristizabal & Judge, 2021), and modeled 
extents from hyper-resolution, local models (McEnery et al., 2005). Although they have advantages, the three 
data sources mentioned do not have streamflow information, which is required by OWP FIM. Using the NWM 
as a source of streamflow input would be a logical choice due to its operational use, but this would introduce 
hydro-climatic uncertainties that could impact the results of adding a multi-fluvial source extension to HAND. 
On the other hand, relying on point sources of streamflow or stage, such as gages, would eliminate this limitation, 
but limit the information available to only a single source of inundation at a specific site. Given these limitations, 
we investigated the use of existing HEC-RAS based models to address the limitations caused by hydro-climatic 
uncertainties and sparse streamflow inputs.

Our HAND based approach coupled with SRCs requires streamflow as input and is agnostic as to the source of 
that streamflow whether forecasted, observed, or probablistic. Due to this fact, evaluation of our relative eleva-
tion CFIM method was conducted by comparison to the HEC-RAS 1D models produced within FEMA region 6 
(Base Level Engineering (BLE) Tools and Resources, 2021; estBFE Viewer, 2021; USACE, 2022). This data set 
was selected due to its large spatial coverage, availability of cross-sections with streamflow information, higher 
level of sophistication when compared to HAND, engineering scale detail, and a storied use in the literature as 
an evaluation data set (Afshari et al., 2018; Bates et al., 2016; Cook & Merwade, 2009; Criss & Nelson, 2022; 
Follum et al., 2017; Hu & Demir, 2021; Li & Demir, 2022; Li et al., 2022; Rajib et al., 2016; Wing et al., 2017; 
Wing et  al.,  2017; Zheng, Maidment, et  al.,  2018; Zheng, Maidment, et  al.,  2018). We selected 49 available 
HUC8s, shown in Figure 7, which span about 185 thousand km 2 across nine states. The maps of the 1% recur-
rence flow (1 in 100 years) and the 0.2% recurrence flow (1 in 500 years) are furnished by InFRM as well as 
the corresponding discharges and mapping extents for evaluation. We did exclude NWM V2.1 Reservoirs from 
evaluation because these are not properly accounted for in the inundation sourced from OWP FIM. Since the BLE 
does account for reservoir inundation, some of the BLE reservoir inundation extents extend beyond the NWM 
reservoir geometries contributing to false negatives (FNs), or under-prediction.

By using the same HEC-RAS derived discharges and FIM extents for creating maps with OWP FIM, we are able 
to separate out errors introduced by NWM inputs and processes including land surface interactions, groundwater 
fluxes, atmospheric forcings, hydraulic routing, and others that would have potentially affected our conclusions 
if we had used NWM forecasted discharges. Figure 8 illustrates both NWM V2.1 and BLE flowpaths as well as 
the BLE cross-sections that have recurrence discharges associated with them. We elected to spatially intersect the 
HEC-RAS cross sections with the NWM stream network assigning the 1% and 0.2% flow rates to each NWM 
reach. To handle multiple intersections, we opted to use a filter to select the median discharge value attributed 
to each NWM reach. This partially handles the influence of neighboring cross sections that could cause flow 
discontinuities and mass conservation issues. Additionally, the stream network of the InFRM furnished models 
are of higher stream densities and bifurcation ratios, as evident in Figure 8, leading to a significant amount of 
FNs along headwater streams with unit Horton-Strahler order due to the lack of representation of these additional 
headwater streams in the NWM network. While the limitations are noted, this method does best to detangle the 
influence of exogenous variables that we do not wish to study in this comparison.

The metrics employed in this study to evaluate inundation extents include CSI, Probability of Detection (POD), 
and False Alarm Ratio (FAR) and are presented in Equations 6–8, respectively. To calculate these secondary 
metrics, one must define three primary metrics starting with true positives (TP) which is predicted wet and wet 
in the BLE benchmark data set. The two types of errors consist of false positives (FP), or type I errors, which 
is dry in the benchmark but predicted wet and false negatives (FN), or type II errors, which is wet in the bench-
mark but predicted dry. Lastly, the reader may come across true negatives (TN) which is defined as dry in both 
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the benchmark and predicted datasets. Maximizing POD indicates a model's ability to detect the given threat 
of interest, inundation, while minimizing FAR is sought to indicate a models ability in reducing FN errors. In 
other words, POD is an indicator of model skill in inundated regions while FAR is an indicator of model skill in 
non-inundated regions. Some work by Gerapetritis and Pelissier (2004) denotes CSI a good proxy for measuring 
a forecasting system's utility in protecting life and property and has been shown as mathematically optimized 
when POD = 1 − FAR. We use all three secondary metrics here to add value to the discussion while avoiding 
aggregating away the meaning of all four primary metrics.

Figure 7. Shows 185 thousand km 2 of modeled areas for the Base Level Engineering (BLE) domain of 49 HUC8s across 
nine states at 0.2% recurrence magnitude for flow rates. BLE maps are produced for two recurrence flows, 1% (100 years) and 
0.2% (500 years), using 1D HEC-RAS models. The maps are used as benchmarks for validation purposes of OWP FIM.

Figure 8. Illustrates Base Level Engineering (BLE) cross sections and flowpaths at the HUC8 12100203 near the 
confluences of West Fork Plum Creek and Clear Fork Plum Creek with Plum Creek. BLE cross sections are intersected with 
NWM reaches and the median recurrence discharge for 1% and 0.2% levels are selected per NWM V2.1 Full Resolution (FR) 
flowpaths. Additionally, we illustrate the NWM V2.1 catchments to provide a sense of how many cross-sections may intersect 
a given NWM flowpaths. The BLE stream network is also shown which is denser than the NWM V2.1 flowpaths meaning 
there are several lower order streams represented in the BLE stream network that are not in the NWM V2.1 flowpaths. This 
creates additional inundation areas in the validation data that are not modeled with our HAND based FIMs.



Water Resources Research

ARISTIZABAL ET AL.

10.1029/2022WR032039

18 of 31

While these metrics are commonly employed in the evaluation of FIM and binary weather prediction communi-
ties in general, they do come with some notable limitations including frequency dependence in the case of CSI 
and FAR (Gerapetritis & Pelissier, 2004; Jolliffe & Stephenson, 2012; Schaefer, 1990; Stephens et al., 2014). 
Thus, frequency dependent statistics should be used with caution when comparing across sites with varying 
frequencies. Lastly, approximately six HUC8s do not have NWM MS reaches thus we imputed the metrics for FR 
for these sites as the best available forecasting capability to compare GMS metrics to

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑇𝑇
 (6)

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (7)

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (8)

3. Results
3.1. Flood Mapping Performance

We produced FIMs for the entire BLE domain within the 49 HUC8 areas across several states in the south central 
US. The forecasted FIMs using the discharges for the 1% (100 years) and 0.2% (500 years) recurrence flows directly 
from HEC-RAS were used to avoid noise and errors from hydrological processes. We computed the statistics, CSI, 
POD, and FAR, for both 100 and 500 years events for Mannings N set to 0.06 and 0.12. These results are presented in 
Figure 9 as violin plots and in Table 2 as aggregated metrics with the results for MS and GMS presented as percent-
age changes from their respective FR values. More specifically, Table 2 sums the primary metrics, TP, FP, FN, and 
TN, across all HUC8s then recomputes the secondary metrics which was done to better account for large variances 
in HUC8 size. The same trends discussed below are consistent across both reporting methods (Figure 9 and Table 2).

The distribution of these flood extent metrics can be examined in Figure 9 as violin plots. Each half of a violin 
plot represents the kernel density estimation (KDE) for a given model (FR, MS, GMS), Manning's n value (0.06, 
0.12), recurrence interval (1%, 0.2%), and performance metric (CSI, POD, FAR). For example, let's examine the 
violin plot for the row marked CSI and column for Manning's n = 0.06. This sub-figure shows the CSI distribu-
tions across all 49 HUC8s when Manning's n is set to 0.06. Each independent, whole violin represents the HUC8 
metric value distribution of FR, MS, or GMS while each half of the violin represents the distribution of that 
data divided up by magnitude (blue for 100 years and orange for 500 years). The horizontal dashed and dotted 
lines represent the 25th, 50th, and 75th percentiles from bottom to top, respectively. Additionally, we show trend 
lines symbolized in green that for each metric and Manning's n combination denotes the best fit line for the three 
methods (FR, MS, and GMS). To avoid having two trend lines per sub-figure, we elected to aggregate the two 
magnitudes together as they tend to observe similar trends across the three models. The slope of each trend line 
is quantified in the figure by its β1 value and the p-value for that statistic which tests the significance of that trend 
(deviation from a zero sloped trend line).

Both Figure 9 and Table 2 contain a fair amount of information that is central to the objectives of this study. As 
previously stated in Section 2.7, we consider CSI as a general proxy for the skill of the inundation extents with 
POD denoting skill on inundated areas and FAR indicating skill on non-inundated areas. Again, the main objec-
tive of the study is to introduce how computing HAND with disaggregated stream networks to those with unit 
stream order can enhance the fidelity of FIMs by capturing fluvial inundation from multiple sources as opposed 
to that of just the nearest flowpath. As can be seen in Figure 9 and Table 2, CSI generally increases from FR to 
MS and MS to GMS for both sets of Manning's n values and flood magnitudes. This increase is primarily driven 
by an increase in POD thus generally increasing the probability of correctly detecting inundation. Also, we note 
that FAR is somewhat, albeit marginally, decreased from FR to MS and MS to GMS for both sets of Manning's 
n values and flood magnitudes. The increases in CSI and POD as well as the decreases in FAR with respect to 
the methods, FR, MS, and GMS, are not only observed among the trend lines but also in the 25th, 50th, and 
75th percentiles (Figure 9). So overall and in other words, the broader distribution of HUC8s improves across 
the three methods. Due to the means by which FIM is produced utilizing FR, MS, and GMS, we can say that the 
more we derive HAND on networks of unit stream order and mosaic the resulting FIMs, the better those FIMs 
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Figure 9. Shows kernel density estimation of the distributions (sample size = 49) for 1% (100 years) and 0.2% (500 years) 
along with horizontal, dashed lines for the 25th, 50th, and 75th percentiles (in order from bottom to top). The sub-figures 
separate the combination of three metrics (CSI, POD, and FAR) for two settings of Manning's n (0.06 and 0.12). Trend lines 
for each combination of metric and Manning's n are shown (sample size = 294) along with associated slope and p-value of 
slope testing one-tailed significance.
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perform. We move more details on the relationship between stream order and FIM skill to the Discussion section 
(Section 4).

Additional noteworthy trends in Figure 9 center around the all-around better performance of FIMs for those of 
higher Manning's n values and recurrence flows. The higher Manning's n value enhances performance for both 
recurrence intervals across all models which seems to better agree with the value of 0.11 used in the BLE model 
(Base Level Engineering (BLE) Tools and Resources, 2021; estBFE Viewer, 2021). Most of this improvement is 
driven by significant increases in POD, but unfortunately, it also leads to a significant amount of over-prediction 
as observed by the increase in FAR. More work can be invested to better regionalize Manning's n values for FIM 
purposes with HAND. We also observe additional trends associated with the magnitude or recurrence interval of 
the flow rates used with the higher flow rates exhibiting better overall CSI, POD, and FAR values than the lower, 
100 years magnitude. We introduce in the Discussion (Section 4) that this skill premium exhibited by higher flow 
events could be due higher quality elevation data in regions that are not described as bathymetric areas.

3.2. Computational Performance

The NFIE experiments were able to produce HAND for 331 HUC6's in 1.34 CPU years (Y. Y. Liu et al., 2016) and 
estimates using work from Djokic (2019) put producing HAND at the FR NWM at 0.55 CPU years. For our work, 
we were able to produce HAND at the full NWM resolution in 0.13 CPU years which represents a substantial 
speed-up compared to previous works. For the MS resolution, an additional 0.05 CPU years is required on top of 
this bringing the total to about 0.18 CPU years to produce 2,188 HUC8s that span additional areas not covered in 
previous HAND versions including Hawaii and Puerto Rico. GMS which generalizes HAND production to the LP 
scale adds a significant amount of CPU time to the process bringing the estimate total to about 1.17 CPU years.

4. Discussion
Overall, the main observation of this study was how FIM performance can be improved by reducing the Horton-Strahler 
stream order of the target stream network used for HAND computation. Most of this change is accounted for by 
substantially increasing POD and inundation extents in some areas thus reducing FNs. We believe, as we later argue, 
that the increase in POD is primarily driven by an increase in the catchment sizes that is inherently enabled by divid-
ing up the stream network into independent stream networks of unit stream order. Additionally, we note that reducing 
drainage order also has some minor influence on reducing inundation extents in other areas and the rate of false 
alarms. We believe that this effect is driven by a change in the stage-discharge relationship where a given streamflow 
leads to lower river stage values when HAND is computed with target stream networks of unit drainage order. We 
seek to explain that these two effects, catchment boundary enlargement and stage-discharge curve lowering, are 
highly interrelated and cannot be easily detangled. Lastly, we discuss the diminishing effects on performance that 
the MS and GMS techniques may have and also any additional effects including enhanced cross-walking abilities.

As evident in the results of the study in Section 3, a sizable amount of the increase in CSI observed by reducing 
stream order for HAND computation can be attributed to increases in POD. This can be inferred by close inspection 

Table 2 
Recomputed CSI, POD, and FAR Using the Primary Metrics, TPs, FPs, and FNs, Aggregated to the BLE Domain

Metric Manning's n

FR MS (% change) GMS (% change))

100 years 500 years 100 years 500 years 100 years 500 years

CSI 0.06 0.5576 0.5839 2.53 2.59 3.95 4.04

0.12 0.5915 0.6149 2.35 2.26 4.51 4.65

POD 0.06 0.6354 0.6575 2.68 2.74 4.39 4.38

0.12 0.7255 0.7446 2.83 2.71 4.84 4.89

FAR 0.06 0.1800 0.1609 −0.72 −1.24 −1.22 −1.24

0.12 0.2379 0.2208 −0.21 −0.18 −2.31 −2.72

Note. The values for MS and GMS methods are expressed in percentage change (%) from their respective values with the 
same Manning's n, magnitude, and metric combination in the Full Resolution (FR) method columns. The best value across 
models is highlighted in bold.



Water Resources Research

ARISTIZABAL ET AL.

10.1029/2022WR032039

21 of 31

of Figure 9 and Table 2 where changes in POD are significantly higher than that of FAR. This intu ition is confirmed 
by previously mentioned work by Gerapetritis and Pelissier (2004) where CSI was shown as a direct function of both 
POD and FAR where CSI is maximized when POD = 1 − FAR. Upon investigation of the performance of HAND 
derived FIM, we note a general increase of catchment sizes for the MS and GMS methods when compared to the 
FR method as they are now delineated independently of any tributaries that would constrain catchment sizes other-
wise. Additionally, we note significantly less water build up along catchment boundaries especially at the junction 
of lower order tributaries with lower flow rates and higher order rivers with more flow. This allows for inundation 
extents to expand across regions previously encapsulated by catchments of joining reaches in lower flow tributaries. 
The water built up along the catchment boundaries can be thought of as a column of water in a cylindrical container 
(catchment) that has exceeded the elevation of the container's rim which does not represent accurate physics.

Large scale HUC8 level evaluations can fail to demonstrate fine grain enhancements as they aggregate away many 
changes that are only clear at more local scales. Future assessments of OWP FIM should consider finer grain 
evaluation units as well possible impact assessments using asset information such as building footprints to better 
illustrate fine grain changes in a more relevant manner to stakeholders. For now, we provide Figure 10 which 
best illustrates the improvement offered by multi-source fluvial flooding capabilities in a more local context. The 
figure is comprised of two agreement rasters for two different HAND based FIMs compared to the validation 
data set for a given region with a high flow mainstem (500 years recurrence flow) running horizontally along 
the region. Sub-Figure 10a demonstrates the agreement raster for the FR stream network as well as its respective 
catchment boundary lines symbolized in white and stream network shown in green. Inspection of this sub-figure 
denotes a clear spatial pattern where TPs or areas correctly inundated are pooled alongside catchment boundary 
lines. On the other side of the catchment boundary, one can witness large swaths of FNs that should be inundated. 
The FNs also exhibit a spatial pattern as in they tend to collocate within catchments of the pictured mainstems 
tributaries. This sort of behavior was introduced early in the paper and shown qualitatively in Figure 2.

As an enhancement, this paper proposes computing HAND for stream networks comprised of level-paths inde-
pendently of one another. In sub-Figure 10b, the agreement raster for the GMS technique is illustrated as well as 
the flowpaths in green. While the entire mosaiced inundation map from GMS (as described in Section 2.6 and 
Equation 2) is used to produce this agreement map, we only show the catchments associated with the mainstem 
of this region that is shown to follow a clear horizontal path. Showing all the catchments for the tributaries that 
were all derived independently would convolute the image. The main message illustrated here is that the catch-
ments associated with the mainstem of this area significantly increase in size. Since they are not restricted by 
the catchments of tributaries that lie in the same drainage areas as those of the mainstem, they extend to include 
those as well. The consequence for inundation extents is a general increase in spatial coverage of the river's water 
which shows better agreement with the benchmark maps. The TPs are no longer bounded by the catchment lines 
and allowed to expand to their natural extents. Additionally, this study has a limitation in that it did not assess 
FIM depths, so limited conclusions can be made about the impact of drainage order reduction techniques on the 
accuracy of FIM depths or water surface elevations.

We note here as a contribution of this study that a major inherent, limitation of HAND is the “nearest drainage” 
constraint or the idea that a given river reach only drains or, in HAND's case, inundates its immediate, unique drain-
age area or catchment. In other words, HAND based FIMs are limited to producing fluvial inundation to only their 
nearest drainage area or catchment. However, we know that fluvial inundation can be sourced from several streams 
nearby that also serve as drainage outlets to the area in question. Generally speaking, drainage areas are hierarchi-
cal in nature so a given drainage area of an outlet point can be decomposed into nested drainage areas for outlet 
points that lie in the original drainage area. A perfect example of this are points that lie on tributary reaches closely 
neighboring a mainstem. These points lie in the drainage area of reaches in the mainstem but inundation from the 
mainstem cannot reach these tributary catchments because of the “nearest” assumption in HAND. Hence it's impor-
tant to state that just like there are different sources of flooding such as fluvial, pluvial, groundwater, reservoir, 
barrier failure (dam/levee/embankment), and coastal, there can also be multiple sources of a riverine flood. HAND 
is only equipped to handle riverine flooding from the nearest flowpaths. Other relevant flowpaths that produce 
fluvial flood waters are not considered here especially if the routing model used doesn't consider backwater effects.

The remaining portion of the improvement in CSI was found to come from a marginal yet notable reduction in 
FAR. Upon investigation of the spatial results in the agreement maps, we found some areas of slight reductions 
in FPs especially where changes in catchment boundaries may have occurred due to the reduction in effective 
stream order in computing HAND. These observations pointed to changes in the SRCs introduced by stream 
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order reduction and catchment definition adjustments. Figure 11 illustrates the general effect that stream order 
reduction has on SRCs. Sub-Figure 11a shows how the average SRCs for all reaches for stage values 0–25 m at 
one-third meter intervals tend to shift the curve down and to the right with ever increasing stream order reduction 
(FR to MS to GMS). This bias is more pronounced for GMS since that implements stream order reduction down 
to the unit level for the entire FR network while MS only does so for 4%–5% of the network.

Attempting to diagnose this bias in the SRC leads one to Equation 1 which shows the reach averaged SRC rela-
tionship between stage and discharge. Across the three methods explored, FR, MS, and GMS, one identifies 

Figure 10. OWP FIM inundation agreement, TP, FP, FN, and TN, with BLE HEC-RAS maps in HUC 11140105 at the 500 years recurrence magnitude. 
Catchment boundaries and flowpaths are shown in white and dotted green, respectively. Sub-figure (a) shows agreement of FR HAND denoting significant areas 
of under-prediction due to junctions and catchment boundaries. Meanwhile, (b) shows the agreement for GMS and much larger catchments leading to much better 
inundation agreement for this given reach. Overall, this illustrates the benefits of stream order reduction for deriving HAND data sets.



Water Resources Research

ARISTIZABAL ET AL.

10.1029/2022WR032039

23 of 31

differences in the inputs and outputs and notes no difference in the stages and Manning's n values. While the 
channel slope and reach lengths are not exactly the same across methods, their averaged differences were statis-
tically insignificant which only leaves room for deviations in volume and bed area. Specifically, we found FR to 
have an average reach length for the study region of 1354.8 km with a standard deviation 249.6 km. For GMS, 
we computed an average reach length of 1398.1 km with a standard deviation of 50.2 km. Again, volume (V(y) 
or simply V) is synonymous to reach-averaged cross-sectional area and bed area (B(y) or B) is analogous to 
reach-averaged hydraulic radius but these associations only hold when reach length, L, is considered. Discharge, 
Q, is directly related to volume and inversely related to bed area and each parameter is weighed according to 
the magnitude of its exponent which are 𝐴𝐴

5

3
 and 𝐴𝐴

2

3
 respectively (see Equation 1). Figures 11b and 11c show how 

volume and bed area compare across the three methods with GMS having significantly greater values than MS 
which has greater values than FR. Again the relative discrepancy between FR versus MS and MS versus GMS 
is explained by the extent of their spatial coverages. Both V and B values increase but are weighed differently by 
their respective exponents and pull Q in different directions. We show in Figure 11d the relationship of 𝐴𝐴

𝑉𝑉 5∕3

𝐵𝐵2∕3
 and 

plot this ratio against stage, y, to show how these two parameters collectively pull the Q up and changes the SRC 
accordingly. In other words, the magnitude and weight of the volume at each stage level exceeds the influence of 
the magnitude and weight of the bed area. Both parameters are set to increase mainly due to much larger catch-
ments leading to more pixels at each stage level as shown in Figure 11e.

Figure 11. Illustrates average quantities for the three methods, FR, MS, and GMS, for each stage value (m). The values are 
(a) Discharge m 3s −1, (b) Volume m 3, (c) Bed Area m 2, (d) a function of Volume and Bed Area, and (e) number of pixels.
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Much of the increase in inundated pixels, volume, and bed area can be explained by much larger catchments that 
encompass neighboring tributaries. These tributaries have a significant amount of bathymetry that is low-lying 
thus easily included in the geometry for the SRC derivation. They also contribute volume and bed area that is 
technically not perpendicular to the flux of streamflow being accounted for in the stream in question. Careful 
examination of Figure 10b shows how much larger catchments include neighboring tributaries and the geometry 
associated with those tributaries. This geometry is not perpendicular to the flow that is associated with the main 
reach thus leading to biases in the SRC. We consider this to have a nuanced effect on skill, while reducing the rate 
of FPs it also can lead to FNs due to biases in the SRC.

We note that reducing stream order does suffer from diminishing returns where the increase in mapping skill for 
applying stream order reduction to roughly 4%–5% of the stream network is about the same as the increase for 
applying stream order reduction to the remaining 95%–96% of the stream network. This motivates further work in 
identifying what the optimal coverage of stream order reduction could be and how to parameterize that coverage. 
One option could be removing lower stream orders (e.g., 1 and 2) from stream order reduction and simply using 
the inundation from FR from these areas.

Additional analysis of Figure 10a, reveals that some catchments don't have inundation or significant inundation. 
While the cause of these errors can be varied, we assert here that conflating four networks for use in evaluations 
leads to significant error. Section 2.4.6 details how reach identifiers are conflated for the FIM network back to 
that of the NWM. One of the issues with the FR version of HAND occurs when a reach of given stream order 
accidently conflates to that of a neighboring tributary that is of lower order which leads to areas of FNs. The 
utilization of MS and GMS only conflates to NWM catchments directly associated with the LP in question which 
is inherently easy to do with those methods. Thus part of the improvement in MS and GMS methods is due to a 
slight improvement in cross-walking methodology. The NWM stream network was derived using the NHDPlus 
V2 data set which was derived from coarser DEMs than those used here. Additional conflation errors are realized 
by cross-walking the stream network used by the BLE maps and those of HAND. The methods that intersect 
HEC-RAS cross-sections with NWM reaches could introduce errors that violate mass conservation. Additionally, 
as previously noted and illustrated in Figure 8, the BLE network is denser than that of the NWM which leads 
to FNs due to headwater streams that are present in the BLE but not within the NWM. Until a singular stream 
network is used for the NWM, BLE benchmark, and for HAND based FIM, conflation will continue being a 
source of error. Future work could aim at producing a singular stream network that complies with the Open 
Geospatial Consortium (OGC) WaterML2.0 HY_FEATURES data model for standard water feature representa-
tion (Blodgett & Dornblut, 2018; Boston et al., 2019; Looser et al., 2014; Simons & Cox, 2014).

Our qualitative analysis suggests that the SRCs offer a significant opportunity for improvement in HAND based 
FIM for future development. The bathymetry of the 10 m DEM from 3DEP is known as lacking proper representa-
tion thus leading to inadequate representation of volume and bed area with all three methods employed. Manning's 
n which typically accounts for roughness could be tuned to account for these DEM limitations or could be held 
fixed to some local value associated with a given flood magnitude. Some adjusting parameter must be introduced 
to enhance the estimation of the bathymetric representation. Lidar DEMs from the USGS at 3 and 1 m scale could 
be utilized to derive HAND as well which we conject should show better agreement with higher fidelity FIMs also 
derived from the same Lidar based DEMs. We suspect that a significant amount of the difference in performance 
between 100 and 500 years magnitude events can be attributed to poor SRC performance due to poor bathymetric 
representation. Lower magnitude events are, logically, more susceptible to poor bathymetric data due a greater 
proportion of the inundation being attributable to areas that are more typically under normal flow conditions. 
Higher flow events tend to cover regions with more floodplain inundation thus less sensitive to errors from bathy-
metric data quality. On a related note, the use of the AGREE DEM method discussed in Section 2.3.1 and Appen-
dix A also interacts with the bathymetry issue introducing several artificial geometry parameters that affect SRC 
shape and quality. To reiterate in this discussion, Section 2.7 pointed out that the BLE's representation of reservoir 
inundation extends beyond the NWM's defined reservoir boundaries, which results in an under-prediction in the 
OWP FIM that is reflected in the computed metrics. Due to focus on the nearest drainage problem, we leave future 
work related to SRC representation including roughness estimation, bathymetric data assimilation and adjust-
ments as well as reservoir inundation as opportunities for major enhancements in HAND based FIM.

Lastly, after errors introduced by conflation, poor roughness estimation, bathymetric/elevation adjustment, and 
reservoir representation are accounted for, HAND still has another fundamental limitation that is inherently 
baked into how it works. To derive HAND and create a FIM for a given area, that area must entirely drain to the 
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stream network and the stream network must also drain itself. In other words, an entire area eligible for flooding 
must monotonically decrease in elevation. DEM's naturally don't do this and the dynamics of true flood events 
don't follow drainage patterns. Enforcing this assumption for HAND leads to significant amount of DEM manip-
ulations that introduce basic errors. These errors are deep into the assumptions of HAND and thus more difficult 
to disentangle. Ultimately, the use of more advanced 2D hydrodynamic models should be considered for dealing 
with this limitation of HAND but would come at significant expense at the given high resolution across very large 
spatial scales and frequent forecast resolutions.

5. Conclusions
The main contribution and conclusion of this work centers around a fundamental limitation in HAND based 
FIM which is a failure to account for multiple possible sources of fluvial inundation since HAND only considers 
inundation from the nearest flowpath. We illustrate that reducing the Horton-Strahler stream order of a HAND 
processing unit down to one enhances skill by significantly reducing false negatives at junctions of major streams. 
In order to reduce stream order of the NWM stream network for HAND computation, we dissected the NWM 
network into two simpler units of singular Horton-Strahler stream order and mosaiced the resulting FIMs derived 
from each. The NWM Mainstems (MS) stream network, which covers roughly 4%–5% of the NWM Full Reso-
lution (FR) network, spans all established forecasting points in the Advanced Hydrologic Prediction System 
(AHPS) and downstream reaches. The inundation from MS derived HAND is mosaiced together with the inun-
dation of FR derived HAND. Extending order reduction to the entire network, the Generalized Mainstem (GMS) 
technique discretizes the NWM FR network into level paths (LP) of unit stream order for HAND computation. All 
LP based FIM derived from LP based HAND datasets are mosaiced together to form one seamless FIM. Dissect-
ing the stream network into regions of LPs with unit stream order is necessary because HAND has a “nearest 
drainage” limitation meaning it only accounts for riverine inundation sourced from the nearest flowpath. In our 
evaluation of this technique, we observe that HAND based FIM improves in skill as we extend from nearest drain-
age inundation in FR to multiple drainage support in MS for only 4%–5% of the FR network. Extending multiple 
drainage support to the entire FR network with GMS based HAND improves skill at around the same magnitude 
that MS improved upon FR. Thus we conclude that deriving HAND with independent stream networks of unit 
Horton-Strahler stream order enhances the skill of FIM but offers diminishing returns as we extend from 4% to 
5% of the network with MS to 100% of the network with GMS since deriving HAND and FIMs at these localized 
scale does add computational expense.

This primary contribution also affects the parameters used to compute stage-discharge relationships shifting 
discharge higher at given stages which reduced the rate of false positives. This shift in SRC behavior is driven 
by larger catchments that influence reach averaged geometric parameters in the Manning's equation. Related 
to SRCs, we noted better results and more sensitivity to unit stream order networks with the higher Manning's 
n value of 0.12 when compared to 0.06 for high magnitude events at 1% (100 years or yr) and 0.2% (500 years 
or yr) recurrence intervals. Additionally, we noted better performance for more intense 500 years events which 
we attribute to a stronger influence of poor quality bathymetric data in 100 years magnitude inundation extents. 
While the AGREE DEM procedure is meant to add some bathymetry primarily motivated to enhance catchment 
and flowpath delineation, it does introduce three parameters that have major implications in the quality of SRCs 
and the resulting FIMs. Utilizing the highest resolution Lidar and bathymetric data should also improve the verti-
cal accuracy of HAND and better account for fine grain features that greatly affect inundation extents. We leave 
questions related to Manning's n localization as well as bathymetry integration, estimation, and/or calibration 
open for future research to answer. Two other issues left open for improvement include the integration of higher 
resolution Lidar-based digital elevation maps (DEM) as well as the use of physics-based models for continental 
scale, high resolution forecasting applications. Due to inherent limitations with HAND, scalable, physics-based 
methods are necessary to consider to provide a better representation of flood extent dynamics in steady and 
unsteady conditions.

Appendix A: Stream Network Enforcement
The location of the stream network is enforced to ensure general agreement with the NWM network which is 
used for forecasting the streamflow inputs. The NHDPlusHR Beta BurnLineEvent layer is used to enforce stream 



Water Resources Research

ARISTIZABAL ET AL.

10.1029/2022WR032039

26 of 31

locations in the NHDPlusHR workflow and best agrees with thalweg locations in the DEM used so it is also used 
here for hydro-enforcement (Moore et al., 2019).

However, to better match the drainage density of the NWM FR V2.1 stream network, which is based on the 
NHDPlus V2, the BurnlineEvents are reduced in density using a nearest neighbor search around the NWM 
flowpaths. Headwater points are first derived for the NWM FR V2.1. For every NWM headwater point, the 
nearest NHDPlusHR point is selected and placed into a set while those excluded are discarded. Only the nearest 
point on the NHDPlusHR is used so any portion of the NHDPlusHR network upstream of this nearest point is 
discarded to avoid extending inundation too far above the modeling domain. The points in this nearest neighbor 
set are then  traversed downstream. Any headwater portion in the NHDPlusHR or any other stream not traversed 
are removed to better match the resolution and spatial locations of the NWM stream network and its headwater 
points. The resulting NHDPlusHR stream network of lower drainage density gets hydro-enforced in subsequent 
operations. This procedure is best illustrated in Figure A1 which shows that the reduced NHDPlusHR network 
corresponds to the NHDPlusHR network at or downstream of NWM V2.1 headwater locations only. Additionally, 
the remaining NHDPlusHR headwaters are later used for seeding a new FIM drainage network that best agrees 
with the DEM after all hydro-conditioning takes place. This results in a stream network that has the same density 
as the NWM V2.1 flowpath network but utilizes the locations of the NHDPlusHR Beta BurnLineEvents.

The reduced density stream network is then utilized to hydro-enforce the DEM with a methodology developed 
by Hellweger and Maidment (1997) known as the AGREE DEM Surface Reconditioning System. The AGREE 
algorithm seeks to burn artificially deep thalweg elevations by a uniform value known as sharp drop. The modifi-
cation continues by excavating an area of a given buffer distance from the thalweg by a depth proportional to the 
distance from the channel given by the smooth drop and buffer distance. The resulting enforcement of the thalweg 
and general bathymetric region results in a cross-section resembling an inverted triangular notch shape with a 
significantly lower elevation along the thalweg line only. In total, the AGREE algorithm requires three parameters 
including the buffer distance, smooth drop, and sharp drop which were set to fixed values of 70, 1,000, and 10 m, 
respectively, but available to the user via the parameter file. As for the buffer distance, we conducted analysis 
varying this parameter from 50 to 90 m in 10 m increments and found that the 70 m value as a good compro-
mise in improvement (Grout, 2020). While the values for these parameters are critical to the inundation extents 
produced, especially for lower flow rates where bathymetric information has more influence, we left further 

Figure A1. This figure illustrates some of the data sets that result from the drainage density reduction of the NHDPlusHR 
Beta BurnlineEvents (dotted black) to the stream density of the NWM FR V2.1 density (blue). The stream network used for 
forecasting, NWM FR V2.1, is of lower stream density than that of the NHDPlusHR which has better agreement with the 
thalweg locations in the DEM used. Thus, we opt to trim the NHDPlusHR network to match the general location and density 
of the NWM network. The nearest neighbor segment in the NHDPlusHR of each NWM headwater locations and the nearest 
point on that segment is determined to match the closest point to that of the NWM headwater. These points are then traversed 
downstream and any segments not traversed are removed. The resulting stream network (red) matches the drainage density of 
NWM V2.1 while corresponding spatially with the NHDPlusHR BurnlineEvents.
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examination of these parameters and their influence on FIM skill out of the scope of this work. Using the AGREE 
method as opposed to simple thalweg burning techniques helps prevent distortions in the delineation of streams as 
well as the catchment boundaries (Baker et al., 2006; Grout, 2020; Hellweger & Maidment, 1997; Mizgalewicz 
& Maidment, 1996; Quenzer, 1998; W. Saunders & Maidment, 1995; W. K. Saunders & Maidment, 1996). Baker 
et al. (2006) noted AGREE produced satisfactory results when compared to other enforcement techniques espe-
cially when computational costs are considered. Downsides to the technique include the possibility of exhibiting 
parallel streams where the burned stream and real stream are both represented (Hellweger & Maidment, 1997; W. 
Saunders, 1999) and some distortion of the catchment boundaries can also be observed (W. Saunders, 1999; W. 
K. Saunders & Maidment, 1996). Some of these drawbacks are addressed by additional conditioning techniques 
applied in the methodology.

Appendix B: Flow Directions and Flats Resolution
To facilitate the generation of a connected stream network and its associated catchments from the conditioned 
DEM, the depression-filled DEM is used to derive connectivity in the form of D-8 flow directions. D-8 seeks 
to allocate a drainage direction for every pixel based on the adjacent eight pixel neighborhood with the steepest 
slope (O’Callaghan & Mark, 1984). The horizontal component of slope is defined as one for the four neighboring 
pixels in the main cardinal directions while the intercardinal pixels are designated a horizontal component of 

𝐴𝐴
√

2 by means of the Pythagorean theorem. Flow directions are derived for non-depression filled regions trivially 
with the above procedure but to define connectivity for every grid cell the remaining flats corresponding to 
depression-filled cells must be resolved.

Flat resolution from flats endemic to the DEM or from depression filled regions is a costly, non-trivial proce-
dure which was originally addressed by Garbrecht and Martz (1997) where flats are resolved by incrementing 
elevations iteratively. Software implementations have developed means to partition the problem and resolve flats 
iteratively with communication across processes (Tarboton, 2005; Tarboton et al., 2009; Tesfa et al., 2011; Wallis 
et al., 2009). The excessive iteration and communication leads to poor computational performance which moti-
vated further work on how to optimize flat resolution (Barnes et al., 2014a; Survila et al., 2016). The established 
literature in this niche field of hydrology discusses how prevalent flats can be in given study areas and how 
difficult the problem is from both computational and hydrologic stand-points (Barnes et al., 2014a; Garbrecht & 
Martz, 1997; Survila et al., 2016; Tarboton, 2005; Tarboton et al., 2009; Tesfa et al., 2011; Wallis et al., 2009). 
OWP FIM utilized a CyberGIS implementation of the D-8 flow direction algorithm with the accelerated resolu-
tion of flats which we found efficient and effective (Survila et al., 2016; Y. Liu et al., 2016).

Data Availability Statement
National Water Model (NWM) data used in this study includes the hydrofabric related data sets (NWM Hydrofabric 
V2.1, 2021) including catchments, flowpaths, and reservoirs (NWM Hydrofabric V2.1, 2021). These are furnished 
by the National Oceanic and Atmospheric Administration (NOAA) Office of Water Prediction (OWP) via an Earth 
Science Information Partners (ESIP) Amazon Web Services (AWS) S3 Bucket (Aristizabal et al., 2022a). OWP Flood 
Inundation Mapping (FIM) capabilities rely extensively on the use of the National Hydrography Plus High Resolu-
tion (NHDPlusHR) datasets including BurnLineEvents (NHDPlusHR GDB, 2021), value-added attributes (VAA) 
(NHDPlusHR GDB, 2021), water boundaries (WBD) or hydrologic unit code (HUC) geometries (NHDPlusHR 
WBD, 2021), and digital elevation maps (DEM) (NHDPlusHR DEM, 2021). Some additional datasets for process-
ing include the National Levee Database (NLD) furnished by the United States Army Core of Engineers (USACE) 
(ENGINEERS, 2021), Land-sea border from the Great Lakes Hydrography Data set (GLHD) furnished by the Great 
Lakes Aquatic Habitat Framework (GLAHF) (GLHD, 2020), and a Land-sea border provided by OpenStreetMap 
(OSM) (Water polygons, 2021). Evaluation data was furnished by Interagency Flood Risk Management (InFRM) 
consortium including cross-sections and flood depths (Base Level Engineering (BLE) Tools and Resources, 2021; 
estBFE Viewer, 2021). Additionally, some FIM hydrofabric data including HAND grids, catchments, flowpaths, 
synthetic rating curves, and cross-walk tables are available on the ESIP bucket (Aristizabal et al., 2022a). Software 
used in preprocessing data, producing FIM hydrofrabic, generating FIM, computing metrics, and conducting analy-
sis is available from a publicly available Github repository and a HydroShare resource called “inundation-mapping” 
from the “NOAA-OWP” organization (Aristizabal et al., 2022b, 2023).
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